A Jordan decomposition for operators in Banach space
نویسندگان
چکیده
منابع مشابه
A Jordan Decomposition for Operators in Banach Space by Shmuel Kantorovitz
1. The Jordan manifold. Let X be a complex Banach space; denote by B(X) the Banach algebra of all bounded linear operators acting on X. For m = 0, 1, 2, • • • , C is the topological algebra of all complex valued functions on the real line R with continuous derivatives up to the order w, with pointwise operations and with the topology of uniform convergence on every compact set of all such deriv...
متن کاملNonwandering operators in Banach space
We introduce nonwandering operators in infinite-dimensional separable Banach space. They are new linear chaotic operators and are relative to hypercylic operators, but different from them. Firstly, we show some examples for nonwandering operators in some typical infinite-dimensional Banach spaces, including Banach sequence space and physical background space. Then we present some properties of ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملNonexpansive Nonlinear Operators in a Banach Space.
I Berger, M., "Sur quelques varigtes riemanniennes compactes d'Einstein," Compt. Rend., 260, 1554-1557 (1965). 2 Bishop, R. L., and R. J. Crittenden, Geometry of Manifolds (New York: Academic Press, 1964). 3Bishop, R. L., and S. I. Goldberg, "On the topology of positively curved Kaehler manifolds," T6hoku Math. J., 15, 359-364 (1963). 4 Bishop, R. L., and S. I. Goldberg, "On the second cohomolo...
متن کاملSemigroups of Operators in Banach Space
We begin with a definition Definition 1. A one-parameter family T (t) for 0 ≤ t < ∞ of bounded linear operators on a Banach space X is a C 0 (or strongly continuous) Semigroup on X if 1. T (0) = I (the identity on X). 2. T (t + s) = T (t)T (s) (semigroup property) 3. lim t↓0 T (t)v = v for all v ∈ X (This the Strong Continuity at t = 0, i.e., continuous at t = 0 in the strong operator topology)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1965
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1965-0203472-4